3.266 \(\int \frac{\sec ^{\frac{5}{2}}(c+d x)}{\sqrt{1+\sec (c+d x)}} \, dx\)

Optimal. Leaf size=85 \[ \frac{\sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{d \sqrt{\sec (c+d x)+1}}+\frac{\sqrt{2} \sinh ^{-1}\left (\frac{\tan (c+d x)}{\sec (c+d x)+1}\right )}{d}-\frac{\sinh ^{-1}\left (\frac{\tan (c+d x)}{\sqrt{\sec (c+d x)+1}}\right )}{d} \]

[Out]

(Sqrt[2]*ArcSinh[Tan[c + d*x]/(1 + Sec[c + d*x])])/d - ArcSinh[Tan[c + d*x]/Sqrt[1 + Sec[c + d*x]]]/d + (Sec[c
 + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[1 + Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.185332, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3822, 4023, 3807, 215, 3801} \[ \frac{\sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{d \sqrt{\sec (c+d x)+1}}+\frac{\sqrt{2} \sinh ^{-1}\left (\frac{\tan (c+d x)}{\sec (c+d x)+1}\right )}{d}-\frac{\sinh ^{-1}\left (\frac{\tan (c+d x)}{\sqrt{\sec (c+d x)+1}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(5/2)/Sqrt[1 + Sec[c + d*x]],x]

[Out]

(Sqrt[2]*ArcSinh[Tan[c + d*x]/(1 + Sec[c + d*x])])/d - ArcSinh[Tan[c + d*x]/Sqrt[1 + Sec[c + d*x]]]/d + (Sec[c
 + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[1 + Sec[c + d*x]])

Rule 3822

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*d^2
*Cot[e + f*x]*(d*Csc[e + f*x])^(n - 2))/(f*(2*n - 3)*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[d^2/(b*(2*n - 3)), I
nt[((d*Csc[e + f*x])^(n - 2)*(2*b*(n - 2) - a*Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b,
d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n]

Rule 4023

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rule 3807

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> -Dist[(Sqrt[2
]*Sqrt[a])/(b*f), Subst[Int[1/Sqrt[1 + x^2], x], x, (b*Cot[e + f*x])/(a + b*Csc[e + f*x])], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d - a/b, 0] && GtQ[a, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^{\frac{5}{2}}(c+d x)}{\sqrt{1+\sec (c+d x)}} \, dx &=\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d \sqrt{1+\sec (c+d x)}}+\frac{1}{2} \int \frac{(1-\sec (c+d x)) \sqrt{\sec (c+d x)}}{\sqrt{1+\sec (c+d x)}} \, dx\\ &=\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d \sqrt{1+\sec (c+d x)}}-\frac{1}{2} \int \sqrt{\sec (c+d x)} \sqrt{1+\sec (c+d x)} \, dx+\int \frac{\sqrt{\sec (c+d x)}}{\sqrt{1+\sec (c+d x)}} \, dx\\ &=\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d \sqrt{1+\sec (c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{1+x^2}} \, dx,x,-\frac{\tan (c+d x)}{\sqrt{1+\sec (c+d x)}}\right )}{d}-\frac{\sqrt{2} \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+x^2}} \, dx,x,-\frac{\tan (c+d x)}{1+\sec (c+d x)}\right )}{d}\\ &=\frac{\sqrt{2} \sinh ^{-1}\left (\frac{\tan (c+d x)}{1+\sec (c+d x)}\right )}{d}-\frac{\sinh ^{-1}\left (\frac{\tan (c+d x)}{\sqrt{1+\sec (c+d x)}}\right )}{d}+\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d \sqrt{1+\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.285565, size = 111, normalized size = 1.31 \[ \frac{\tan (c+d x) \left (\sqrt{-(\sec (c+d x)-1) \sec (c+d x)}+\sin ^{-1}\left (\sqrt{1-\sec (c+d x)}\right )+2 \sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )-\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{\sec (c+d x)}}{\sqrt{1-\sec (c+d x)}}\right )\right )}{d \sqrt{-\tan ^2(c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^(5/2)/Sqrt[1 + Sec[c + d*x]],x]

[Out]

((ArcSin[Sqrt[1 - Sec[c + d*x]]] + 2*ArcSin[Sqrt[Sec[c + d*x]]] - Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/
Sqrt[1 - Sec[c + d*x]]] + Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])])*Tan[c + d*x])/(d*Sqrt[-Tan[c + d*x]^2])

________________________________________________________________________________________

Maple [B]  time = 0.201, size = 218, normalized size = 2.6 \begin{align*}{\frac{ \left ( \cos \left ( dx+c \right ) \right ) ^{2} \left ( -1+\cos \left ( dx+c \right ) \right ) }{2\,d \left ( \sin \left ( dx+c \right ) \right ) ^{2}} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{5}{2}}}\sqrt{{\frac{\cos \left ( dx+c \right ) +1}{\cos \left ( dx+c \right ) }}} \left ( \arctan \left ({\frac{\sqrt{2} \left ( \cos \left ( dx+c \right ) +1+\sin \left ( dx+c \right ) \right ) }{4}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) \sqrt{2}\cos \left ( dx+c \right ) -\arctan \left ({\frac{\sqrt{2} \left ( \cos \left ( dx+c \right ) +1-\sin \left ( dx+c \right ) \right ) }{4}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) \sqrt{2}\cos \left ( dx+c \right ) -4\,\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \cos \left ( dx+c \right ) -2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ){\frac{1}{\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(5/2)/(1+sec(d*x+c))^(1/2),x)

[Out]

1/2/d*(1/cos(d*x+c))^(5/2)*cos(d*x+c)^2*((cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(arctan(1/4*2^(1/2)*
(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*2^(1/2)*cos(d*x+c)-arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))
^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*2^(1/2)*cos(d*x+c)-4*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*cos(d*
x+c)-2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))/(-2/(cos(d*x+c)+1))^(1/2)/sin(d*x+c)^2

________________________________________________________________________________________

Maxima [B]  time = 2.217, size = 1179, normalized size = 13.87 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(1+sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/4*(4*sqrt(2)*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d*x + 2*c) - 4*sqrt(2)*cos(1/2*arctan2(sin(
d*x + c), cos(d*x + c)))*sin(2*d*x + 2*c) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)
*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*s
qrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) +
 2) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), c
os(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), c
os(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x
+ 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(si
n(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arct
an2(sin(d*x + c), cos(d*x + c))) + 2) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log
(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(
2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2)
- 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(cos(1
/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2
(sin(d*x + c), cos(d*x + c))) + 1) + 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*co
s(2*d*x + 2*c) + sqrt(2))*log(cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), c
os(d*x + c)))^2 - 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 1) - 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))
*sin(3/2*arctan2(sin(d*x + c), cos(d*x + c))) + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/2*arctan2(sin(d*x
 + c), cos(d*x + c))))/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*d)

________________________________________________________________________________________

Fricas [B]  time = 2.12773, size = 826, normalized size = 9.72 \begin{align*} \frac{2 \,{\left (\sqrt{2} \cos \left (d x + c\right ) + \sqrt{2}\right )} \log \left (\frac{2 \, \sqrt{2} \sqrt{\frac{\cos \left (d x + c\right ) + 1}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) +{\left (\cos \left (d x + c\right ) + 1\right )} \log \left (-\frac{\cos \left (d x + c\right )^{2} + 2 \, \sqrt{\frac{\cos \left (d x + c\right ) + 1}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}{\cos \left (d x + c\right ) + 1}\right ) -{\left (\cos \left (d x + c\right ) + 1\right )} \log \left (-\frac{\cos \left (d x + c\right )^{2} - 2 \, \sqrt{\frac{\cos \left (d x + c\right ) + 1}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}{\cos \left (d x + c\right ) + 1}\right ) + \frac{4 \, \sqrt{\frac{\cos \left (d x + c\right ) + 1}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{4 \,{\left (d \cos \left (d x + c\right ) + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(1+sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*(2*(sqrt(2)*cos(d*x + c) + sqrt(2))*log((2*sqrt(2)*sqrt((cos(d*x + c) + 1)/cos(d*x + c))*sqrt(cos(d*x + c)
)*sin(d*x + c) - cos(d*x + c)^2 + 2*cos(d*x + c) + 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + (cos(d*x + c) +
 1)*log(-(cos(d*x + c)^2 + 2*sqrt((cos(d*x + c) + 1)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - cos(d*x +
 c) - 2)/(cos(d*x + c) + 1)) - (cos(d*x + c) + 1)*log(-(cos(d*x + c)^2 - 2*sqrt((cos(d*x + c) + 1)/cos(d*x + c
))*sqrt(cos(d*x + c))*sin(d*x + c) - cos(d*x + c) - 2)/(cos(d*x + c) + 1)) + 4*sqrt((cos(d*x + c) + 1)/cos(d*x
 + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(5/2)/(1+sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{\frac{5}{2}}}{\sqrt{\sec \left (d x + c\right ) + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(1+sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(5/2)/sqrt(sec(d*x + c) + 1), x)